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ABSTRACT 
We study the sparse grid combination technique as an efficient method for the solution of fluid dynamics 
problems. The combination technique needs only O(h-1

n(log(h-1
n))d-1) grid points for d-dimensional 

problems, instead of O(h-d
n) grid points used by the full grid method. Here, hn = 2-n denotes the mesh 

width of the grids. Furthermore, provided that the solution is sufficiently smooth, the accuracy (with respect 
to the L2- and the L∞-norm) of the sparse grid combination solution is O(hα

n(log(hn
-1))d-1), which is only 

slightly worse than O(hα
n) obtained by the full grid solution. Here, α includes the order of the underlying 

discretization scheme, as well as the influence of singularities. Thus, the combination technique is very 
economic on both storage requirements and computing time, but achieves almost the same accuracy as 
the usual full grid solution. Another advantage of the combination technique is that only simple data 
structures are necessary. Where other sparse grid methods need hierarchical data structures and thus 
specially designed solvers, the combination method handles merely d-dimensional arrays. Thus, the 
implementation of the combination technique can be based on any 'black box solver'. However, for reasons 
of efficiency, an appropriate multigrid solver should be used. Often, fluid dynamics problems have to be 
solved on rather complex domains. A common approach is to divide the domain into blocks, in order to 
facilitate the handling of the problem. We show that the combination technique works on such 
blockstructured grids as well. When dealing with complicated domains, it is often desirable to grade a grid 
around a singularity. Graded grids are also supported by the combination technique. Finally, we present 
the first results of numerical experiments for the application of the combination method to CFD problems. 
There, we consider two-dimensional laminar flow problems with moderate Reynolds numbers, and discuss 
the advantages of the combination method. 

KEY WORDS Sparse grids Combination technique Multi-level Hierarchical basis Block structured grids CFD 
applications 

THE COMBINATION METHOD 

A frequent problem in engineering sciences is the analysis of flows by numerical simulation. The 
simulation of complex real life experiments usually needs a great deal of computing time and 
returns vast amounts of data. Thus, in order to obtain sufficiently accurate simulation results, it is 
necessary to find algorithms which economize on both computing time and storage space. 

For some time, computer storage became available faster than computational speed increased, 
a development which proved the need for algorithms of lower computational effort. With the 
introduction of multigrid techniques, a jump in computational speed occurred. Consequently, 
research work in numerical fluid mechanics now focuses on storage again. Here, the sparse grid 
methods provide an approach which is highly economical on storage requirements, yet yields a 
fairly accurate solution on a fine, sparse grid that is computed from coarse grid solutions. 
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Usually, computational fluid dynamics solvers compute solutions on full grids, i.e. grids with 
O(h-d) grid points, where h denotes the mesh size of the grid, and d the dimension of the problem 
(cf. References 4, 10, or 11 for examples of such solvers). An advantage of this approach is that 
simple d-dimensional arrays can be used as data structures, which facilitates the implementation. 
However, a disadvantage is that storage requirements and computing time increase polynomially 
as the mesh size decreases, and soon get out of range. 

A different approach involves sparse grids13. Figure 1 shows a two-dimensional, regular 
quadratic full grid with 33 grid points in each direction, and its corresponding sparse grid. Sparse 
grids only need O(h-1(log(h-1))d-1) grid points. The accuracy deteriorates both pointwise and 
with respect to the L2- and L∞-norm only slightly from O(hα) to O(hα(log (h -1))d-1), provided that 
the solution is sufficiently smooth. Here, α denotes the order of the underlying discretization 
scheme as well as the influence of singularities. With respect to the energy norm, even the same 
order as on full grids is obtained1. 

Thus, the efficient usage of sparse grids for the solution of computational fluid dynamics 
problems greatly reduces storage requirements and computing time, but still yields results which 
are only slightly worse than the solution obtained on a full grid. For a recent overview on sparse 
grid methods for computational fluid dynamics problems, see Reference 7. 

One way of using sparse grids efficiently involves hierarchical, tree-like data structures and 
special algorithms for both the discretization and the solution. Since conventional solvers usually 
do not provide means for dealing with hierarchical data structures, they cannot be employed 
for solving problems on sparse grids. Thus, new algorithms and new codes have to be developed 
in order to compute solutions on sparse grids efficiently. 

Obviously, an algorithm is needed which combines the advantages of both methods: low 
storage requirements, a low number of operations involved, but still simple data structures. In 
the following, we present an algorithm that fulfills these requirements. 

Full and sparse grids 
As an introductory example, consider the differential equation: 

Lu = f (1) 
with the linear operator L of second order in the unit cube Ω = [0, 1]d Ì Rd, and with appropriate 
boundary conditions. For reasons of simplicity, the case d = 2 will be considered first. 

Furthermore, let Ωi,j be the rectangular grid on the unit square Ω, with mesh width hj = 2-j 

in x- and hi = 2-1 in y-direction. Thus, any grid can be represented uniquely by an index pair 
(i,j), with i,jÎ N. Figure 2 shows an index diagram and its corresponding grids. 

The usual approach for solving a partial differential equation is to discretize (1) on an equidistant 
grid Ωn,n, and to solve the arising linear system of equations: 

Ln,nun,n = fn,n (2) 
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by an appropriate method. Then, the obtained solution, un,n has the error: 
en,n = u - un,n = O(hα) 

where α reflects the underlying discretization scheme as well as the influence of singularities. 
Here, un,n is assumed to be the interpolant of the discrete solution on grid Ωn,n. 

An efficient way of solving the discrete system (2) is the multigrid method. The number of 
operations needed by a multigrid solver is proportional to the number of grid points, and 
therefore of order O(h-2). 

An approach that reduces the number of grid points, and thus the problem size, to order 
O(h-1·log(h-1)) for the two-dimensional case is the sparse grid method. However, the structure 
of a sparse grid is more complicated than that of a full grid. Usually, partial differential equation 
solvers only feature full grid solutions, but do not possess means for dealing with the more 
economical, but also more complicated sparse grid method. Note that sparse grid methods 
involving finite elements do exist1. However, they use hierarchical, tree-like data structures. 
Consequently, completely new code has to be programmed. An approach that computes the 
economic sparse grid solution with an O(h-1·log(h-1)) algorithm but merely uses simple full 
grid data structures is the combination technique. 

Calculation of a sparse grid solution using the combination method 
A sparse grid solution may be calculated as a linear combination of full grid solutions ui,j 

according to the combination technique that was introduced in Reference 5. For the 
two-dimensional case, 

is used as combination formula. As illustrated in the index diagram in Figure 3, this linear 
combination is equivalent to the following algorithm: 'Add up the bilinearly interpolated solutions 
of all grids Ωi,j with index pairs (i,j) on the diagram's diagonal, and subtract the bilinearly 
interpolated solutions of all grids with index pairs on the diagram's subdiagonal'. The full grid 
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solution un,n that corresponds to the sparse grid solution uc
n,n computed in this diagram is denoted 

in the upper right corner of the diagram. Figure 4 illustrates the combination of grids and 
corresponding solutions. 

According to the combination technique, different problems of type Li,jui,j = fi,j occur, in 
general on non-equidistant grids. More precisely, n problems with about 2n unknowns and n — 1 
problems with about 2 n - 1 unknowns have to be solved. All in all, this results in a total number 
of O(h-1·log(h-1)) unknowns that must be dealt with in the two-dimensional case. 

The accuracy of the sparse grid solution is O(h-2·log(h-1)) (with respect to the L2- and 
L∞-norm), provided that the solution is sufficiently smooth5. Thus, the sparse grid solution is only 
slightly worse than the order O(hα) that is obtained by the full grid solution. More precisely, for 
the proof we assume that for each solution ui,j (interpolated from grid Ωi,j to grid Ωn,n),an error 
splitting of the form: 

ui,j = u + hα
iω1(hi) + hα

jω2(hj) + hα
ihα

jω3(hi,hj ) (4) 
holds for any fixed point (x, y)ÎΩ. ω1,ω2 and ω3 are appropriate functions of x and y depending 
on the parameters hi or/and hj, where "i,j 

|ω1,(hi)| ≤ c1 

|ω2,(hj)| ≤ c2 
|ω3,(hi,hj)| ≤ c3 (5) 

holds for some constants c1, c2 and c3 smaller than a constant C (cf. Reference 2). We see that 
if we insert the error splitting formula (4) into (3), the leading error terms cancel. Thus, we get 
the estimate: 

|u - uc
n,n ≤ C· hα

n ·(1 + 5/4 · log (h-1
n)) = O(hα

n · log (h-1
n)) (6) 

Related techniques have been studied in Reference 1, where it is shown that the energy-norm 
of the error of the combination technique is of the same order as for the full grid approach8. 

Thus, although the combination technique is an algorithm involving substantially less 
operations than the regular full grid method, the obtained sparse grid solution is only slightly 
worse than the corresponding full grid solution. 

As mentioned above, the combination technique can be extended to the three-dimensional 
case. This leads to: 

Another property of the combination technique is that it provides a natural basis for 
parallelization. Each of the full grid problems to be calculated according to the linear combination 
formula (3) may be computed independently on a different workstation. Communication has to 
take place only in the end, where the summation and subtraction of the different solutions is 
performed. Thus, already on a relatively coarse grain level with very low communication and 
setup requirements, we obtain a simple parallel algorithm8. 

After the problems on grids Ωi,j i+j {n,n + 1} were solved, their bilinearly interpolated 
solutions have to be combined according to (3). This leads to another problem: Interpolating 
each solution ui,j to grid Ωn,n, and combining the interpolated solutions results in an algorithm 
of order O(h-2) operations for the two-dimensional case. This is the same order an ordinary full 
grid solver would have required. Therefore, an interpolation algorithm of lower order is needed: 
a technique using hierarchical bases satisfies this requirement. 

Hierarchical bases 
For reasons of simplicity, the interpolation algorithm will be explained for the one-dimensional 

case first. Let u1 and u2 be discrete values of the solution on the one-dimensional grids Ω1 and 
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Ω2, as illustrated in Figure 5. Following the conventional approach, one would first interpolate 
u1 at x1 and x3, and then add both solutions at the five calculated grid points. 

A more economical algorithm is obtained by the following approach: both solutions u1 and 
u2 are first transformed from their standard basis representation into their representation in 
hierarchical basis. For a one-dimensional grid with N+1 grid points, where N = 2n, this 
transformation is achieved by the following algorithm: 

in teger l,h,x 
real u[0 : N] 
for l = 1 to n s t ep 1 

h = 2l-1 

for x = h to N — h s tep 2h 
u[x] = u[x] - (u[x - h] + u[x + h])/2 

endfor 
endfor 

For the two-dimensional case, the transformation algorithm works similarly. Let ui,j be the 
solution on grid Ωi,j, and let ui,j be stored in an array u[0:N, 0:M], with N = 2i and M = 2j. 
Then, the representation of ui,j with respect to hierarchical basis is obtained by the following 
algorithm: 

integer lx, ly, hx, hy, x, y 
real u[0: N, 0: M)] 
for ly = 1 to j s tep 1 

hy = 2ly-1 

for x = 0 to N step 1 
for y = hy to M — hy s tep 2hy 

u[x,y] = u[x,y]- (u[x,y - hy] + u[x,y + hy])/2 
endfor 

endfor 
endfor 
for lx = 1 to i s t ep 1 

hx = 2lx-1 

for y = 0 to M s tep 1 
for x = hx to N — hx s tep 2hx 

u[x,y] = u[x,y] - (u[x - hx,y] + u[x + hx,y])/2 
endfor 

endfor 
endfor 

The extension of this transformation algorithm to higher dimensions is straightforward. For 
the hierarchization of a d-dimensional function, we start computations on the fine full grid, and 
step by step turn to coarser full grids until we reach the coarsest grid with merely one grid point 
in the interior of the domain. At each of these grid-levels, for every grid point that is not present 
in the coarser full grid of the next level, we compute and save the difference between the value 
of u at this grid point and the d-linear interpolant of the function values at the neighbouring 
grid points which belong to the next coarse level. 
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The effect of this transformation on u1 and u2 is illustrated in Figure 6. The bold broken lines 
indicate the transformed values; thin lines indicate values in standard basis representation. (Note 
that in Figure 6, the thin lines are partly covered by the broken bold lines.) The resulting 
hierarchical representations of u1 and u2 are shown in Figure 7. 

The advantage of using the hierarchical basis representation during the combination process 
is that no interpolation to additional grid points has to be performed explicitly: For each 'missing' 
grid point, the interpolated value would be zero in hierarchical basis representation, and thus 
can be omitted during the combination of solutions. This is illustrated in Figure 6. The interpolated 
values u1(x1) and u1(x3) are zero in their hierarchical basis representation. Consequently, when 
accumulating solutions in their hierarchical basis representation according to (3) in order to 
obtain the combined solution uc

n,n, less operations are needed than before: for each solution ui,j 
that has to be added to uc

n,n, no operations are needed in any point that exists in Ωs
n,n, but not in Ωi,j, 

since the value of ui,j in hierarchical basis representation is zero in those points. Thus, in terms 
of the hierarchical basis, the interpolation from Ωi,j to Ωs

n,n does not involve any additional 
computational efforts. 

All in all, the transformation of the full grid solutions ui,j to hierarchical basis representation, 
the combination of solutions according to (3) (where 0 values are omitted), and the 
retransformation into standard basis representation on the sparse grid Ωs

n,n results in an algorithm 
with an order O(h-1 · log (h-1)) of operations. This is of the same order as the number of unknowns 
involved in the combination technique. Thus, the overall complexity of the combination algorithm 
is also of order O(h-1 · log (h-1)). 

Altogether, the combination of the different solutions can be performed efficiently according 
to the following algorithm (here for the two-dimensional case): 

• Set the values of the combined solution uc
n,n on grid Ωs

n,n to zero: uc
n,n = 0. 

• For all (i,j) with i + j Î {n,n + 1} do: 
— transform the solution ui,j obtained on grid Ωi,j into its hierarchical representation. 

This needs O(2i+j) operations. 
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— add(if i + j = n+ 1) or subtract (if i + j = n) the solution ui,j on grid Ωi,j in hierarchical 
representation to the hierarchical representation of the combined solution uc

i,j on grid 
Ωs

n,n. This can be done with O(2i+j) operations as well. 
Thus, we computed the combined solution uc

n,n on the sparse grid Ωs
n,n in hierarchical basis 

representation, with O(h -1 · log(h-1)) operations all in all. 
Note that the sparse grid solution is stored on a sparse grid in hierarchical basis representation. 

The backward transformation of uc
n,n into standard basis representation together with the 

interpolation to the full grid Ωn,n would be of order O(h-2). Furthermore, the storage requirements 
of the retransformed solution on the full grid would be of order O(h-2) as well. 

Depending on the kind of application for which the combination technique is used, it has to 
be decided which type of representation of the solution is required. For example, if the combination 
technique is to be inserted into an existing code as a black box solver, and other parts of the 
existing program are to be applied to the combined solution (e.g. graphics), then the original 
data structure has to be re-established (which usually will be a two-dimensional array). This, 
however, leads to order O(h-2) of both operations and storage requirements. 

Nevertheless, even in this case it may be profitable to employ the combination technique, in 
order to exploit its advantages mentioned above with respect to computational cost and 
parallelization properties. Again, the combination technique can be used together with any 
suitable existing solver, so that computational and parallelization advantages can be made 
available no matter which code is used. Experience on the usage of the combination technique 
with several different CFD-solvers is described elsewhere4, 7, 8. 

If the two-dimensional array is not required as data structure of the result, i.e. if we settle for 
the representation in hierarchical basis only, the combined solution can be stored in a hierarchical, 
tree-like data structure. In this case, both storage requirements and number of operations are 
merely of order O(h -1 · log(h-1)). However, if graphics or post-processing of any other kind is 
desired, those programs have to be able to handle hierarchical data structures. 

A third method which is also of order O(h-1· log(h-1)) uses 'distributed' grids: the combination 
of the ui,j according to (3) is not carried out. Instead, the 'operands' of the combination formula 
(3), i.e. the small full grid solutions ui,j are stored. When a linear operator F is to be applied to 
the combined solution, it is applied to the distributed solutions ui,j instead: 

Thus, an implicit working with the sparse grid solution is possible9. 

Combination method for block-structured grids 
In many engineering problems, grids occur on rather complicated domains. In order to 

facilitate the handling of such problems, the domain is decomposed into several smaller, simpler 
domains, usually called 'blocks'. This approach is very advantageous. 

Firstly, the block structure of a grid reduces main memory requirements. In an inner iteration 
step, the problem is solved one block at a time. An outer iteration establishes the overall solution. 
Secondly, the block structure of a grid is a natural basis for the parallelization of the solver. 
Each processor solves the problem on one of the blocks, and communication is necessary merely 
along block interfaces, in order to achieve a smooth solution on the whole domain. 

The combination technique works with block-structured grids, too. However, care has to be 
taken that for each index pair (i,j), the respective block grids are orientated such that grid lines 
are continuous across block interfaces. This turns out to be a problem for domains with holes. 
In this case, it is possible that block orientation changes within the domain in such a way that 
grid lines are no longer continuous across block interfaces. A simple example with Ω1,2 grids 
for each block is shown in Figure 8. Therefore, in the following studies we restrict ourselves to 
domains without holes. 
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A simple example of a multi-block domain is the L-shaped area in Figure 9 which consists 
of 3 blocks. 

The extension of the combination technique to multi-block domains is straightforward. Again, 
(3) is used as combination formula, where the index pairs indicate the number of grid points 
per block. For the three-block L-shaped area, the combination technique with n = 4 is illustrated 
in Figure 10. 

Combination method for graded grids 
In many application problems, domains with singularities occur, e.g. caused by re-entrant 

corners. In order to obtain a sufficiently good approximation of the solution around the 
singularity, mesh widths have to be held rather small. Thus, when using a regular grid, many 
grid points are needed. However, most of these grid points cover an area of the domain where 
the solution is rather smooth, and a lot less points would suffice to yield a fairly good result. 



EFFICIENT SOLUTION OF FLUID DYNAMICS PROBLEMS 259 

Therefore it is desirable to allow for the grading of a grid: around a singularity, mesh widths 
are kept small, whereas in those parts of the domain where the solution is expected to be rather 
smooth, mesh widths are chosen to be larger. 

The combination technique works well with graded grids. However, a slight modification has 
to be made in the algorithms which transform a solution from standard basis into hierarchical 
basis representation. So far, the hierarchical basis functions were symmetrical. On a graded grid, 
however, the different scaling of the grid in x- and y-direction has to be considered for the 
interpolation (cf. Figure 11). 

This leads to slight changes in the transformation algorithms. For the one-dimensional case, 
the interior part u[x] = u[x] - (u[x - h] + u[x + h])/2 of the loop has to be replaced by: 

α = X[x] - X[x - h] 
β = X[x + h] - X[x] 

Here, X denotes the X-coordinates of the grid points, whereas x is the index in the x-direction of 
the current grid point. Note that the hierarchical basis functions are not symmetrical in this 
case. Of course, this does not complicate their handling: as before, the support of a basis function 
ranges from X[x - h] to X[x + h]. Note that here h denotes not the mesh width, but the 
difference in the index corresponding to the current basis function. However, α and β now differ 
in their size. For the two-dimensional case, the necessary changes in the algorithm are analogous. 
The combination of the solutions ūi,j on the graded grids according to (3) for a one block 
domain is shown in Figure 12. 

COMBINATION TECHNIQUE AND THE NAVIER-STOKES EQUATIONS 

Now we want to apply the combination technique for solving the Navier-Stokes equations. 
So far, we have merely studied the combination technique for the linear elliptic differential 

equation Lu = f. For this problem, the error of the combination technique is of order 
O(hα · log(h-1)), where a depends on the order of the underlying discretization scheme as well 
as on the strength of the singularities, if present5. 

Now, we study the Navier-Stokes equations: 
—ΔU + Re(uux + vuy) + px = 0 
— Δv + Re(uvx + vvy) + py = 0 

ux + vx = 0 (8) 
on different domains. 
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Even for simple linear model problems, it is fairly difficult to show the existence of an error 
splitting such as (4). For the Navier-Stokes equations, in general not even an analytical solution 
is known, and only numerical approximations can be gained. Therefore, it is usually not possible 
to prove the existence of an error splitting like (4) theoretically. However, even for those cases 
numerical experiments using the combination technique produced satisfactory results. This 
indicates that some cancellation of certain error-terms analogous to (4) and (6) still takes place. 

A program package that can be used to numerically solve Navier-Stokes flow problems is 
the LiSS package, which was developed at the GMD (Gesellschaft für Mathematik und 
Datenverarbeitung mbH). We use it in the following to solve the different discretized 
Navier-Stokes problems arising in the combination technique. Other packages that are equally 
suitable for the efficient solution of flow problems since they involve multigrid-type solvers, are 
e.g. COMET/FASTEST, which were developed at the Department of Fluid Dynamics of the 
University of Erlangen4. 

The LiSS program package was designed for simulating two-dimensional, incompressible, 
laminar flows in general domains. Note that in addition to (8), the LiSS package can also handle 
time-dependent Navier-Stokes equations and the Stokes equations (cf. Reference 11, pp. 82-83 
for further details). However, in this paper, we restrict outselves to (8) on general domains with 
appropriate boundary conditions. 

As discretization, flux-difference splitting is used3. In general, this only leads to an accuracy 
of order O(hα), 1 ≤ α ≤ 2. Note that for higher Reynolds numbers, α ≈ 1 holds. In addition, LiSS 
supports three other discretizations (cf. Reference 11, pp. 204-206). 

For a given grid, the LiSS Navier-Stokes solver calculates the velocity u in horizontal direction, 
the velocity v in vertical direction, and the pressure p in each grid point. Note that the LiSS 
package uses non-staggered grids, and is therefore well suited to the combination technique. 

The LiSS package incorporates a multigrid solver for Navier-Stokes problems. The user can 
choose between F-, V- or W-type cycles, with W-cycles being the default. However, only standard 
coarsening is possible. The grid levels to be used in the cycles may be specified by the user. 

Many flow problems that are studied using a numerical solver are applied to domains that 
are generally rather complex. The LiSS package supports the partitioning of a domain into 
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blocks, each of which has to be topologically rectangular. As it was mentioned before, this feature 
not only simplifies the handling of complex geometries; it also provides a natural basis for the 
parallelization of solvers of partial differential equations. 

Boundary fitted grids are generated by means of transformed Poisson equations (cf. Reference 
11, pp. 62-70 for further details). If the domain consists of several adjacent blocks, each grid 
block is computed separately. Nevertheless, grid lines are generated continuous across block 
interfaces. 

In the following studies, full multigrid cycles were used, with smoothing iterations on all 
available levels. For the successive, differently sized V-cycles of which the full multigrid F-cycle 
consists, the maximum number of multigrid iterations to be carried out may be explicitly set by 
the user. However, if the residual reduction is less than a certain (user defined) threshold eps, 
iteration is finished earlier. In our experiments, the following values were used for the different 
V-cycles which make up the F-cycle: 

• for the 'smallest' V-cycle (starting on a rather coarse grid): 20 iterations, or eps = 10 -8; 
• for the intermediate V-cycles: 20 iterations, or eps = 10-5; 
• for the 'largest' V-cycle (starting on the finest grid level): 20 iterations, or eps = 10 -12. 

NUMERICAL EXPERIMENTS 

To demonstrate the quality of the combination technique, several two-dimensional flow problems 
were studied. Since the exact solution of most of the following model problems is not known 
in general, an accurate approximation obtained by higher order τ-extrapolation computed on 
the finest grid our computers could handle is used as a referential solution uref. 

Thus, the error of the full grid solution is defined as: 

en,n = uIsnn
ref - un,n 

where uIsnn
ref denotes the interpolation of Uref to grid Ωn,n,which is much coarser than Ωref.. 

Analogously, the error of the solution obtained by the combination technique is defined as: 

ec
n,n = uIsn,n

ref — uc
n,n 

where uIs
n,n/ref denotes the solution uref interpolated to the sparse grid Ωs

n,n. 
For the analysis of the development of the errors, the discrete L2-norm is defined as: 

where Ωi
n,n denotes the interior of the grid Ωn,n. Correspondingly, the discrete L∞-norm is defined 

as: 

Furthermore, we consider the development of the error in certain special grid points. 

Flow through a channel 
The first model problem is the flow through a channel. Calculations were made with a one-block 

domain and an equidistant grid, as shown in Figure 13. The boundary conditions consist of a 
parabolic inflow at the left side of the domain, and no-slip wall conditions at top and bottom 
sides. For the outflow at the right side of the domain, outflow conditions for u and v are derived 
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Table 1 Channel, Reynolds number 500: development of the L2- and L∞-norms of the error in u 

n 

2 
3 
4 
5 
6 
7 

error on full grid 

||en,n||∞ 

0.0008587 
0.0002877 
0.0001157 
0.0000494 
0.0000209 
0.0000084 

* 
2.9845776 
2.4877094 
2.3413637 
2.3689157 
2.4733055 

||en,n||2 

0.0007785 
0.0001832 
0.0000424 
0.0000097 
0.0000023 
0.0000005 

* 
4.2504045 
4.3245916 
4.3704026 
4.2384821 
4.2030537 

error of combined solution 
||ecn,n||∞ 

0.0010419 
0.0010508 
0.0009682 
0.0005820 
0.0003703 
0.0002602 

* 
0.9915220 
1.0853564 
1.6634895 
1.5717994 
1.4228486 

||ecn,n||2 

0.0008690 
0.0004785 
0.0005458 
0.0004205 
0.0002769 
0.0001699 

* 
1.8161912 
0.8765887 
1.2981862 
1.5186081 
1.6293010 

from flux-difference splitting. Pressure p was set to 0 at the outflow region. In our experiment, 
a Reynolds number of 500 was chosen. Table 1 shows the development of the L2- and L∞-norms 
of the error for the velocity u in x-direction for both the full grid solution and the combination 
technique. Since the exact solution is known for this simple model problem, we used it here as 
the referential solution. 

We see that for the L∞-norm, the error quotient of the full grid solution approaches the value 
2. From this result we infer that the accuracy obtained by the full grid method is O(h). For the 
combination method, however, the achieved accuracy seems to be of order O(h·log (h-1)). 

Furthermore, for the L2-norm, we observe an O(h-1)-accuracy for the velocity u in x-direction 
for the full grid solution. This might be due to the symmetry and simplicity of the solution: in 
this very special case with a constant solution u, flux-difference splitting discretization on a 
regular grid results in a cancellation of the leading O(h) error term in most of the grid points 
because of the constant flow profile and the equidistant grid, and produces an O(h2) accuracy. 
A more detailed analysis of the respective accuracies will be given for the next model problem. 
Since the combination method involves the solution of problems on grids with in general different 
mesh size in the x- and y-direction, the flux-difference splitting discretization results only in first 
order accurate solutions. 

Domain with a backward facing step 
Now we turn to a more interesting model problem: we consider the flow over a backward facing 

step that involves the L-shaped domain shown in Figure 14. The domain is substructured in 19 
quadratic blocks. Furthermore, in order to cope with the singularity situated at the reentrant 
corner, we use a graded grid where the mesh width is refined towards the singularity, as well 
as towards the bounding walls. As an example for a graded grid, the block-structured grid Ω3,3 
is shown in Figure 15. 

As boundary conditions for our numerical experiments, we chose parabolic inflow at the 
leftmost side of the domain, parabolic outflow at the rightmost side of the domain, and no-slip 
conditions at the remaining walls. Moreover, we first selected a moderate value of 50 for the 
Reynolds number. 
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Table 2 Backward facing step, graded grid, Reynolds number 50: development of the L2- and L∞-norms of the error in u 

n 

2 
3 
4 
5 
6 

error on full grid 

||en,n||∞ 

0.1482879 
0.0760391 
0.0414564 
0.0194566 
0.0070550 

* 
1.9501529 
1.8341958 
2.1307106 
2.7578352 

||en,n||2 

0.0591591 
0.0282950 
0.0145896 
0.0068300 
0.0024826 

* 
2.0907969 
1.9393918 
2.1360960 
2.7511673 

error of combined solution 

||ecn,n||∞ 

0.1574975 
0.1096267 
0.0803236 
0.0509586 
0.0315403 

* 
1.4366712 
1.3648128 
1.5762525 
1.6156674 

||ecn,n||2 

0.0642801 
0.0372796 
0.0246288 
0.0161749 
0.0101769 

* 
1.7242695 
1.5136564 
1.5226617 
1.5893720 

Figures 16 and 17 illustrate the solution we obtained with the combination method. They 
show contour lines of the velocity u in x-direction, and the stream function ψ respectively. The 
computed full grid solutions practically look identical. 

Computations on regular, non graded grids showed basically the same behaviour of the 
solutions in large parts of the domain. However, near the re-entrant corner, the errors were 
larger due to the pollution effect of the singularity situated there. Therefore, the use of a properly 
graded grid is recommended. Nevertheless the choice of a correctly graded grid depends not 
only on the shape of the domain, but also on the Reynolds number. Thus, the proper choice of 
the grading generally is a crucial task. 

For the velocity u in x-direction, Table 2 shows the development of the L2- and L∞-norms of 
the error of both the full grid solution and the combined solution. The error of the velocity v 
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in y-direction behaves principally the same. The results for the pressure p are similar as well. 
However, since the pressure is only determined up to a constant, the pressure-values obtained 
on different grids have to be properly modified before the combination can take place. This can 
be achieved by subtracting the value of the pressure at e.g. the upper right corner of the domain 
from the pressure-values in every point for each specific grid. 

From Table 2, one may assume that the accuracy obtained on the full grid is of order O(h), 
whereas the accuracy of the combination method is of order O(h·log(h-1)). This can be shown 
in more detail by dividing both numerator and denominator of the error quotient by the 
corresponding logarithmic terms. Thus, we now compute: 

The resulting values are shown in Table 3. 
We see that for both norms, the quotient approaches the value 2. Therefore, for this problem 

the accuracy obtained by the combination technique is of the order O(h·log(h-1)). In addition, 
Table 4 shows the error in the velocity u at the centrepoints of block 3 and 5, respectively. 

A comparison of the size of the error reveals that both methods achieve equal accuracy for 
• 225 inner grid points per block for the full grid solution, and 
• 129 inner grid points per block for the combined solution. 

This demonstrates the efficiency of the combination technique. Thus, the combination technique 
involves less unknowns and consequently less operations. 

Now, we turn to larger Reynolds numbers and choose the value 500. For the velocity u in 
x-direction, Table 5 shows the development of the L2- and L∞-norms of the error of both the 
full grid solution and the combined solution. The error of the velocity v in y-direction shows 
the same behaviour. 

Once again, we observe an accuracy of roughly O(h) for the full grid case. Thus, the accuracy 
of the full grid solution is not affected by the choice of a higher Reynolds number. 

Table 3 Backward facing step, graded grid, Reynolds 
number 50: accuracy of combined solution 

n 

3 
4 
5 
6 

2.1550068 
1.8197504 
1.9703156 
1.9388009 

2.5864052 
2.0182117 
1.9033194 
1.9072488 

Table 4 Backward facing step, graded grid, Reynolds number 50: error development of u at the centrepoints of blocks 
3 and 5 

n 

2 
3 
4 
5 
6 

error on full grid 

||e3n,n|| 

0.0301999 
0.0166723 
0.0077501 
0.0031529 
0.0010405 

* 
1.8113821 
2.1512368 
2.4580706 
3.0303067 

|e5n,n| 

0.0172789 
0.0268919 
0.0213154 
0.0120622 
0.0047621 

* 
0.6425334 
1.2616164 
1.7671252 
2.5329464 

error of combined solution 

|e3cn,n| 

0.0299728 
0.0156895 
0.0092650 
0.0039801 
0.0000433 

* 
1.9092863 
1.6943816 
2.3278053 

91.9236174 

|e5cn,n| 

0.0026696 
0.0113660 
0.0140938 
0.0134984 
0.0104715 

* 
0.2348789 
0.8064542 
1.0441121 
1.2890626 
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However, the accuracy of the solution obtained by the combination method is somewhat more 
sensitive to the higher Reynolds number. This is due to the extremely distorted grids Ω1,n, Ω2,n-1, 
Ωn-1,2 and Ωn-1 that are involved in the combination process. The solution that is produced on 
these grids by the flux-difference discretization is not well suited to result in a sufficient cancellation 
of leading error terms in the combination process. Consequently, the accuracy drops. Nevertheless, 
for sufficiently large values of n, we expect the combination method to regain its 
O(h·log h-1)-behaviour. 

Channel with a constriction 
Now we consider the flow through a channel with a constriction. The shape of the domain and 

the block structure we chose are illustrated in Figure 18. Since we want to study the accuracy 
of the combination technique itself and not the additional problems posed on the combination 
method by the influence of curved boundaries, we restrict ourselves to polygonal boundaries 
for the resolution of the shape at the constriction. 

The domain is substructured into 28 quadrilateral blocks. We chose the graded grid in Figure 
19 where the mesh width decreases towards the bounding walls. As boundary conditions for 
our numerical experiments, we chose parabolic inflow at the leftmost side of the domain, and 

Table 5 Backward facing step, graded grid, Reynolds number 500: development of the L2- and L∞-norms of the error in u 

n 

2 
3 
4 
5 
6 

error on full grid 

||en,n||∞ 

0.1482879 
0.0760391 
0.0414564 
0.0194566 
0.0070550 

* 
1.9501529 
1.8341958 
2.1307106 
2.7578352 

||en,n||2 

0.0591591 
0.0282950 
0.0145896 
0.0068300 
0.0024826 

* 
2.0907969 
1.9393918 
2.1360960 
2.7511673 

error of combined solution 

||ec
n,n||∞ 

0.4816670 
0.4090551 
0.3653634 
0.3291922 
0.2929877 

* 
1.1775111 
1.1195843 
1.1098786 
1.1235701 

||ec
n,n||2 

0.1198857 
0.0924246 
0.0778842 
0.0654446 
0.0541855 

* 
1.2971189 
1.1866919 
1.1900788 
1.2077881 
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no-slip conditions at its top and bottom. The outflow conditions for the rightmost side of the 
domain are derived from the flux-difference discretization. Again, a moderate value of 50 was 
chosen for the Reynolds number. 

Figures 20 and 21 illustrate the solution we obtained with the combination method. They 
show contour lines of the velocity u in x-direction, and the stream function ψ respectively. The 
full grid solution behaves just like the combined solution. 

For the velocity u in x-direction, Table 6 shows the development of the L2- and L∞-norms of 
the error of both the full grid solution and the combined solution. The error of the velocity v 
in y-direction behaves more or less in the same way. 

Once again it can be seen that the accuracy of the combination method is of the order 
O(h·log(h-1)). This is more clearly shown in Table 7, where we present the quotients of the 
errors divided by the respective logarithmic terms. The resulting values are close to 2. 

Furthermore, Table 8 shows the error in the velocity u at the centrepoints of block 12 and 
14, respectively. 

Once more, a comparison of the size of the errors reveals that both methods achieve equal 

Table 6 Channel with a constriction, graded grid, Reynolds number 50: development of the L2- and L∞-norms of the 
error in u 

n 

2 
3 
4 
5 
6 

error on full grid 

||en,n||∞ 
0.3262069 
0.2186938 
0.1257605 
0.0628579 
0.0238464 

* 
1.4916148 
1.7389699 
2.0007107 
2.6359538 

||en,n||2 
0.1217483 
0.0765705 
0.0426588 
0.0205897 
0.0076063 

* 
1.5900159 
1.7949518 
2.0718556 
2.7069327 

error of combined solution 

||ecn,n||∞ 
0.3559262 
0.2424631 
0.1692680 
0.1131389 
0.0698580 

* 
1.4679600 
1.4324217 
1.4961076 
1.6195564 

||ecn,n||2 

0.1285810 
0.0874394 
0.0563446 
0.0348364 
0.0202508 

* 
1.4705155 
1.5518691 
1.6174026 
1.7202486 
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Table 7 Channel with a constriction, graded grid, 
Reynolds number 50: accuracy of combination technique 

n 

3 
4 
5 
6 

2.2019404 
1.9098956 
1.8701349 
1.9434665 

2.2057733 
2.0691588 
2.0217532 
2.0642983 

Table 8 Channel with a constriction, graded grid, Reynolds number 50: error development of u at the centrepoints of 
blocks 12 and 14 

n 

2 
3 
4 
5 
6 

error on full grid 

||e12n,n|| 

0.0355327 
0.0133459 
0.0026419 
0.0003289 
0.0004789 

* 
2.6624335 
5.0516531 
8.0337330 
0.6867427 

||e14n,n|| 

0.2783096 
0.1630949 
0.0882897 
0.0423866 
0.0156717 

* 
1.7064276 
1.8472697 
2.0829645 
2.7046603 

error of combined solution 

|e12cn,n| 

0.0365755 
0.0003691 
0.0182089 
0.0223609 
0.0200569 

* 
99.1045624 
0.0202681 
0.8143171 
1.1148740 

|e14cn,n| 
0.2860317 
0.1892374 
0.1191162 
0.0709612 
0.0391186 

* 
1.5114965 
1.5886790 
1.6786101 
1.8140029 

accuracy for 
• 225 inner grid points per block for the full grid solution, and 
• 129 inner grid points per block for the combined solution. 

Again, this demonstrates the efficiency of the combination technique. 

Skyline of Munich 
Finally, we present the result of calculations involving a problem with a rather complicated 

domain and block structure. We consider the flow over the skyline of Munich as shown in 
Figure 22. Of course, there is no practical relevance for this problem. Instead of a 3-dimensional 
model of Munich, merely the skyline is used, which is a 2-dimensional projection. Furthermore, 
no turbulence model was applied. In addition, only a Reynolds number of 500 was chosen, which 
is not sufficient at all to model the flow of air realistically. 
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Thus, this model problem just serves as an example to demonstrate that with the aid of block 
structuring, quite complicated domains can be handled by the combination technique as well. 

As boundary conditions for our numerical experiments, we chose a half-parabolic inflow with 
its vertex at the domain's upper left for the leftmost side of the domain, a constant velocity in 
x-direction for the topmost side of the domain, and no-slip conditions at its bottom side. The 
outflow conditions for the rightmost side of the domain are derived from flux-difference equations. 
Figure 23 illustrates the solution obtained with the combination method for n = 5. 

CONCLUDING REMARKS 

In this paper, we studied the combination technique for the solution of flow problems. So far, 
we have seen that with moderate Reynolds numbers, the quality of the solutions obtained by 
the combination method is of the order O(h·log(h-1)), whereas the conventional full grid 
technique produces solutions with an O(h)-accuracy. Since the combination method involves 
substantially less unknowns than the full grid technique, it is far more efficient. 

Furthermore, the combination method also works well for graded grids, which are necessary 
to resolve singularities and regions with highly varying solution gradients. In addition, we 
demonstrated that the combination technique can be applied successfully together with block 
structuring and domain decomposition techniques. 

Finally, we shortly want to mention further advantages of the combination method. Firstly, it 
leads to a natural basis for parallelization. Secondly, it can be added rather easily to any existing 
solver. 

However, for a real practical application of the combination method within a CFD solver, 
certain further problems have to be studied. So far, we considered only flow problems with rather 
low Reynolds numbers. For less moderate Reynolds numbers, the combination method is 
somewhat sensitive to the use of extremely distorted grids, such as Ω1,n, Ωn,1. In this case, the 
corresponding solutions should not be taken into account. This results in a smaller range of 
solutions involved in the combination process and results in a slight modification of the 
combination formula (3): 

So far, the relation between no and the accuracy of the solution is still a not cleared up question, 
and thus subject of further research. Furthermore, future work has to be done studying problems 
with higher Reynolds numbers and higher order discretization schemes. 

Finally, the solvers applied to the subproblems on the different grids that appear in the 
combination method should be robust in the sense that they also converge rapidly on distorted 
grids. 
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The application of the combination method for the prediction of a three dimensional flow 
wull be subject of future work. 
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